42 research outputs found

    Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions

    Get PDF
    A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice

    Links between Circadian Rhythms and Psychiatric Disease

    No full text
    Determining the cause of psychiatric disorders is a goal of modern neuroscience, and will hopefully lead to the discovery of treatments to either prevent or alleviate the suffering caused by these diseases. One roadblock to attaining this goal is the realization that neuropsychiatric diseases are rarely due to a single gene polymorphism, environmental exposure, or developmental insult. Rather, it is a complex interaction between these various influences that likely leads to the development of clinically relevant syndromes. Our lab is exploring the links between environmental exposures and neurobehavioral function by investigating how disruption of the circadian (daily) clock alters the structure and function of neural circuits, with the hypothesis that disrupting this crucial homeostatic system can directly contribute to altered vulnerability of the organism to other factors that interact to produce psychiatric illness. This review explores some historical and more recent findings that link disrupted circadian clocks to neuropsychiatric disorders, particularly depression, mania, and schizophrenia. We take a comparative approach by exploring the effects observed in human populations, as well as some experimental models used in the laboratory to unravel mechanistic and causal relationships between disruption of the circadian clock and behavioral abnormalities. This is a rich area of research that we predict will contribute greatly to our understanding of how genes, environment, and development interact to modulate an individual’s vulnerability to psychiatric disorders

    The complexity of simplicity: Role of sex, development, and environment in modulation of the stress response

    No full text
    Anecdotally, we all know stress is “complicated”, but most stress research is undertaken using incredibly simplified models that may not allow us to fully understand underlying interactive mechanisms that are present in the “real world”. This attempt at simplification, while sometimes necessary, may explain some of the difficulties in translating basic science findings to the clinical and epidemiological data on stress and stress-related disorders. In a symposium at the 2015 International Society for Psychoneuroendocrinology meeting in Edinburgh, UK, a series of speakers explored “ The many pathways to plasticity in the stress system” , specifically focusing on variables that are in many cases eliminated from studies of stress in order to provide increased experimental control. Specifically, four speakers tackled the complex contributions of Sex, Development , and Environment in stress research, providing evidence from published and unpublished work from their own laboratories demonstrating that in our race for simplicity in experimentation, the stories we tell become all the more complex

    Minireview: The Neuroendocrinology of the Suprachiasmatic Nucleus as a Conductor of Body Time in Mammals

    No full text
    Circadian rhythms in physiology and behavior are regulated by a master clock resident in the suprachiasmatic nucleus (SCN) of the hypothalamus, and dysfunctions in the circadian system can lead to serious health effects. This paper reviews the organization of the SCN as the brain clock, how it regulates gonadal hormone secretion, and how androgens modulate aspects of circadian behavior known to be regulated by the SCN. We show that androgen receptors are restricted to a core SCN region that receives photic input as well as afferents from arousal systems in the brain. We suggest that androgens modulate circadian behavior directly via actions on the SCN and that both androgens and estrogens modulate circadian rhythms through an indirect route, by affecting overall activity and arousal levels. Thus, this system has multiple levels of regulation; the SCN regulates circadian rhythms in gonadal hormone secretion, and hormones feed back to influence SCN functions

    Resilience and vulnerability: a neurobiological perspective

    Get PDF
    The brain is constantly adapting to a changing environment. It detects environmental stimuli, integrates that information with internal states, and engages appropriate behavioral and physiological responses. This process of stability through change is termed "allostasis", and serves as a mechanism by which an organism can adapt to a changing environment to function optimally, and ultimately ensure survival. The ability to adapt to stressors in the environment by "bending" but not "breaking" can be considered as "resilience". Individuals that are more able to withstand such challenges to their stability, and bounce back after, can be considered more resilient than those that do not. This review will explore what resilience means in a neurobiological context, the role of stress and allostasis, and focuses on the role of neurotrophins, particularly BDNF, in mediating adaptive plasticity

    Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice

    No full text
    In mammals, it is well established that circadian rhythms in physiology and behavior, including the rhythmic secretion of hormones, are regulated by a brain clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. While SCN regulation of gonadal hormone secretion has been amply studied, the mechanisms whereby steroid hormones affect circadian functions are less well known. This is surprising considering substantial evidence that sex hormones affect many aspects of circadian responses, and that there are significant sex differences in rhythmicity. Our previous finding that “core” and “shell” regions of the SCN differ in their expression of clock genes prompted us to examine the possibility that steroid receptors are localized to a specific compartment of the brain clock, with the discovery that the androgen receptor (AR) is concentrated in the SCN core in male mice. In the present study, we compare AR expression in female and male mice using Western blots and immunochemistry. Both of these methods indicate that AR’s are more highly expressed in males than in females; gonadectomy eliminates and androgen treatment restores these sex differences. At the behavioral level, gonadectomy produces a dramatic loss of the evening activity onset bout in males, but has no such effect in females. Treatment with testosterone, or with the non-aromatizable androgen, dihydrotestosterone restores male locomotor activity and eliminates sex differences in the behavioral response. The results indicate that androgenic hormones regulate circadian responses, and suggest an SCN site of action

    A role for androgens in regulating circadian behavior and the suprachiasmatic nucleus

    No full text
    The suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock controlling behavioral and physiological rhythms, including rhythmic secretion of gonadal hormones. Gonadectomy results in marked alteration of circadian behaviors, including lengthened free-running period, decreased precision of daily onset of running, and elimination of early-evening but not late-night activity bouts. Androgen replacement restores these responses. These aspects of rhythmicity are thought to be regulated by the brain clock, although the site of androgen action remains unknown. Anatomically, the rodent SCN is composed of a ventrolateral core and a dorsomedial shell, and the present studies show that androgen receptors (AR) are localized to the ventrolateral core SCN. Using a transgenic mouse bearing dual reporter molecules driven by the AR targeted to both membrane and nucleus, we find that projections of AR-containing cells form a dense plexus in the core, with their fibers appearing to exit the SCN dorsally. In a second transgenic strain, in which the retinorecipient gastrin-releasing peptide cells express a green fluorescent protein reporter, we show that gastrin-releasing peptide cells contain AR. Through immunocytochemistry, we also show that SCN AR cells express FOS after a light pulse. Importantly, gonadectomy reduces the FOS response after a phase-shifting light pulse, whereas androgen replacement restores levels to those in intact animals. Taken together, the results support previous findings of a hypothalamic neuroendocrine feedback loop. As such, the SCN regulates circadian rhythms in gonadal hormone secretion, and in turn, androgens act on their receptors within the SCN to alter circadian function

    Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus

    No full text
    The suprachiasmatic nucleus (SCN) of the hypothalamus is the neural locus of the circadian clock. To explore the organization of the SCN, two strains of transgenic mice, each bearing a jellyfish green fluorescent protein (GFP) reporter, were used. In one, GFP was driven by the promoter region of the mouse Period1 gene (mPer1) (Per1::GFP mouse), whereas in the other, GFP was inserted in the promoter region of calbindin-D(28K)-bacterial artificial chromosome (CalB::GFP mouse). In the latter mouse, GFP-containing SCN cells are immunopositive for gastrin-releasing peptide. In both mouse lines, light-induced Per1 mRNA and Fos are localized to the SCN subregion containing gastrin-releasing peptide. Double-label immunohistochemistry reveals that most gastrin-releasing peptide cells (approximately 70%) contain Fos after a brief light pulse. To determine the properties of SCN cells in this light-responsive region, we examined the expression of rhythmic Period genes and proteins. Gastrin-releasing peptide-containing cells do not express detectable rhythms in these key components of the molecular circadian clock. The results support the view that the mammalian SCN is composed of functionally distinct cell groups, of which some are light induced and others are rhythmic with respect to clock gene expression. Furthermore, the findings suggest that gastrin-releasing peptide is a potential mediator of intercellular communication between light-induced and oscillator cells within the SCN

    Androgens modulate structure and function of the suprachiasmatic nucleus brain clock

    No full text
    Gonadal hormones can modulate circadian rhythms in rodents and humans, and androgen receptors are highly localized within the core region of the mouse suprachiasmatic nucleus (SCN) brain clock. Although androgens are known to modulate neural plasticity in other CNS compartments, the role of androgens and their receptors on plasticity in the SCN is unexplored. In the present study, we ask whether androgens influence the structure and function of the mouse SCN by examining the effects of gonadectomy (GDX) on the structure of the SCN circuit and its responses to light, including induction of clock genes and behavioral phase shifting. We found that after GDX, glial fibrillary acidic protein increased with concomitant decreases in the expression of the synaptic proteins synaptophysin and postsynaptic density 95. We also found that GDX exerts effects on the molecular and behavioral responses to light that are phase dependent. In late night [circadian time (CT)21], GDX increased light-induced mPer1 but not mPer2 expression compared with intact (INT) controls. In contrast, in early night (CT13.5), GDX decreased light induced mPer2 but had no effect on mPer1. At CT13.5, GDX animals also showed larger phase delays than did INT. Treatment of GDX animals with the nonaromatizable androgen dihydrotestosterone restored glial fibrillary acidic protein, postsynaptic density 95, and synaptophysin in the SCN and reinstated the INT pattern of molecular and behavioral responses to light. Together, the results reveal a role for androgens in regulating circuitry in the mouse SCN, with functional consequences for clock gene expression and behavioral responses to photic phase resetting stimuli
    corecore